
into account in the design and testing of power plants and other units and technological pro- 
cesses where there is gas-liquid flow in dynamic conditions. 

NOTATION 

2, relative amplitude of pressure oscillations; Pl, P2, P3, pressure at different points 
of the pipeline; Ap3_ I, pressure difference; Ql, liquid flow rate in pipeline 6; Q2, liquid 
flow rate in pipeline 2; Q2', liquid flow rate in measuring section; Q2", liquid flow rate 
in pipeline 5; $, r actual relative volume gas content of flow in tests with and without 
pressure oscillations; ~eq, ~eq', equilibrium gas content of flow at mean pressure in the 
case of tests with and without pressure oscillations; A~, additional gas liberation; v, fre- 
quency of pressure oscillations. 
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HEAT TRANSFER IN CHANNELS WITH POROUS INSERTS 

DURING FORCED FLUID FLOW 

A. A. Plakseev and V. V. Kharitonov UDC 536.25:62-405.8 

General analytic expressions are obtained to calculate heat transfer and temper- 
ature fields in a plane channel with a porous inserL with allowance for the ef- 
fective thermal conductivity of the heat carrier and the distribution of heat be- 
tween the skeleton of the insert and the fluid in the boundary pores. 

Porous media with various types of structures are finding increasing use in engineering 
to intensify the cooling of thermally-loaded objects when severe restrictions are placed on 
the temperature of the heat-transmitting surfaces. The studies [i-5] described methods of 
calculating the two-dimensional temperature distributions in a porous skeleton and in fluid 
moving through it. Convective heat transfer in a porous medium is usually described by using 
a system of equations based on two basic assumptions; i) the Blot number for particles of 
the porous medium is small compared to unity; 2) all heat from the wall of the channel is 
transferred to the interior of the porous insert by conduction through the skeleton and is 
transmitted to the fluid by bulk heat transfer. Such an approximation is fully valid in the 
cases of the cooling of high-heat-conducting porous metals by water. If the thermal conduc- 
tivity of the skeleton is negligible, then heat is transferred from the wall directly to the 
fluid moving in the boundary pores and is transferred into the interior of the porous layer 
by the effective thermal conductivity of the fluid due to its mixing in connected pores. 
This heat-transfer regime was studied in detail in [5, 6]. 

The laws governing heat transfer in the above-examined cases may differ considerably 
both qualitatively and quantitatively. Here, we propose a more general approach to calcula- 
ting heat transfer in a channel with porous inserts: we consider the removal of heat from the 
wall by both the skeleton and the fluid and we examine the effect of the Blot number on bulk 
heat transfer. This problem is important for water-cooled structures made of steel, Invar, 
molybdenum, and other materials with pores and particles smaller than 1 mm when the thermal 
loads are approximately 106 W/m 2 or more. Most attention will be focused on the role of the 
effective thermal conductivity of the fluid and the heat distribution between the skeleton 
and the fluid in the formation of the temperature profiles and heat transfer in channels 
with porous inserts. 

Moscow Physico'EngineeringInstitute. Transiated from Inzhenerno-'Fizicheskii Zhurnal, 
Vol. 56, No. i, pp. 36-44, January, 1988. Original article submitted July 31, 1987. 
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TABLE i. Effect of the Relative Heat Transfer 
af/~s and Thermal Conductivity If/I s of the 
Fluid on the Percentage of Heat N0, %, Remo- 
ved from the Channel Wall by the Skeleton on 
the Section of Stabilized Heat Transfer (cal- 
culated from Eq. (18)) 

o~. 0 0 , l  1 10 
S 

0 
0,5 
1 
2 
3 
oo 

100 
100 
100 
100 
100 
100 

100 
94 
93 
92 
92 
91 

100 
79 
71 
63 
59 
50 

100 
69 
53 
38 
31 

9,1 

I00 
67 
50 
33 
25 
0 

Formulation of the Problem. We will examine a typical cooling system [4, 5]: a porous 
layer of thickness h (along the z axis) and length ~ (along the x axis) is heated in the 
plane z = 0 by a heat flux q and is cooled by a one-phase heat carrier moving in a plane- 
parallel flow at the filtration velocity v along the x axis (perpendicular to the direction 
of the incident heat flow). The temperature of the fluid at the inlet (x = 0) is constant 
and equal to Tin. The bottom surface of the layer z = h is in contact with a thermally- 
insulated wall. The conductive heat transfer in the direction of fluid flow is negligible 
compared to the convective heat transfer [i-3]. The two-dimensional steady-state temper- 
ature distributions of the skeleton Ts(x, z) and the fluid Tf(x, z) satisfy the equations 
[ 1 ,  4, 5 ] :  

s ~ - -02T~ a~ (T s -- T f )  = 0, ( 1 ) 

OZTf. 
f ~ @ a . ( T ~ - - D )  = oCpv OTe 

Ox ( 2 )  

Here, I s and If are the transverse thermal conductivities of the porous skeleton and the 
fluid in the pores (with allowance for its mixing), respectively; a v is the bulk heat-trans- 
fer coefficient for heat transfer between the skeleton and the fluid filtering through it. 
Let us formulate the boundary conditions. On the boundary between the porous layer and the 
heated wall, the heat delivered to the wall is redistributed: some of the heat ~0 is trans- 
mitted to the skeleton of the porous layer, while another portion (i - ~0) is transmitted 
from the wall directly to the fluid in the boundary pores (the pores having a common boun- 
dary with the wall). The part Ob supplied to the porous layer is transferred by conduction 
through the skeleton to the bottom wall. However, since this wall is thermally insulated, 
then this heat is returned to the porous layer directly into the fluid moving inside the 
boundary pores. These considerations lead to the boundary conditions: 

Tf = Tin at x = 0; (3) 

--~ OTs = [1 - - q o ( X ) ] q  a t  = l ] o ( x )  q, --~, 0Tf  
s Oz f Oz 

z = 0 ;  (4) 

s OZ f OZ = ~] b ( X )  q a ~  - 2 = h .  ( 5 )  

Considering that the temperature of the bouundaries of the porous layer Ts(X, 0), Ts(x, h) 
coincides with the temperature of the wall in the given section x and that the temperature 
of the fluid in the boundary pores Tf(x, 0), Tf(x, h) differs from the temperature of the 
walls by the amount of the temperature head in the stagnant boundary layer of fluid, we can 
express the fractions of heat ~0 and Ob through the corresponding temperatures 

1 - ,~o (x) = ~ f  ( T ~ - -  Tf ) ( 6 )  at Z = O; 
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Fig. i. Effect of the thermal conductivity of the material of the 
porous skeleton and the hydraulic diameter of the pores on the frac- 
tion of heat removed from the wall by the skeleton (a) and on the 
local heat transfer of the wall (b) on the initial section with coo- 
ling of the porous layer by water at room temperature; calculation 
with Eqs. (12), (13) for a brush-like structure with the porosity 
H = 0.5 at a hydraulic resistance of 107 Pa/m (i atm/cm) and differ- 
ent hydraulic diameters: i) d e = 0.5 mm; 2) 1 mm; 3) 2 mm; material 
of the skeleton: 4) Invar; 5) steel IKhlSNgT; 6) molybdenum; 7) al- 
uminum; 8) copper. Xm, W/(m'K); ~m(0), W/(m2"K). 

Fig. 2. Dependence of the local heat transfer of a wall with a po- 
rous insert on the section of stabilized heat transfer on the rela- 
tive thickness of the porous layer H with an effective thermal con- 
ductivity for the fluid Xf = ~ (curves 1-5) and Xf = 0 (curve 6) 
and different values of r i) r = i; 2) 0.75; 3) 0.5; 4) 0.25; 5) 
r = 0; curves i-5 were calculated with Eq. (13) or (16) at ~ = i, 
while curve 6 was calculated from Eq. (17). 

~b(x ) =  af (T s - T f )  at z = h .  
q (7) 

Here, ~f is the effective coefficient of heat transfer from the wall to the fluid in the 
boundary pores. Beyond the stagnant layer of fluid on the wall, characterized by the ther- 
mal resistance i/~f, heat is transmitted through the fluid to the interior of the porous 
layer thanks to mixing of the fluid. It should be noted that allowing for heat transfer by 
the moving fluid in the transverse direction (along the z axis) gives boundary-value prob- 
lem (1-7) a mathematical singularity at the points of inflection (0,0) and (0,h), where 
conditions (3) and (4), (5) for Tf cannot be satisfied simultaneously. In fact, conditions 
(4) and (5) for Tf are realized outside the stagnant layer of fluid on the walls. Thus, we 
will:henceforth require only the satisfaction of condition (3) at the points (0,0) and (0,h). 
This singularity has no effect on the temperature of the skeleton or its derivatives. 

Boundary conditions (5) and (7) require further explanation. The fact that the bottom 
surface of the porous layer is in contact with a thermally insulated wall does not mean that 
we need to put 8Ts/SZ = 0 and 8Tf/Sz = 0 (at z = h) simultaneously. Conditions (5) and (7) 
mean that if the temperature of the bottom wall is higher than the temperature of the heat 
carrier in the boundary pores, then heat will inevitably be transferred directly from the 
wall to the fluid moving in the boundary pores. This fact is particularly noticeable when 
the skeleton is thin and bulk heat transfer is low. In this case, the temperatures of the 
top and bottom walls differ negligibly. 

Thus, heat is transferred to the fluid not only as a result of its contact with the ske- 
leton in the porous layer (which is reflected by the second terms in Eqs. (i) and (2)), but 
also by its contact with both walls of the layer through the boundary pores (i.e., from 
above and below). This means that the profile of fluid temperature may have a minimum near 
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TABLE 2. Comparison of Heat-Transfer Results Calculated from Eq. (13) with 
Experimental Data on the Heat Transfer of Walls with Projections at a Water 
Filtration Velocity v = 1.6 m/sec 

Material of the 
projections 

Steel IKhlSNgT 

Duralumin DI6T 

Copper MI 

Spacing of 
the projec- 
tions, mm 

0.75 

0.80 

i .40 

Size of the 
edge of a 
projection, 
mm 

0.50 

0.57 

0.90 

Porosity of 
the struc- 
ture, 

56 

49 

59 

Length of 
heated sec- 
tion, mm 

ii.5 

20 
12 

~calc x i0 ~ 
W/(m2"K) 

8.3 

17 

17 

expt x 104. 
WI(m2.K) 

9+1 

16 • 

i8 i 2 

the bottom wall (except for the inlet section, where the fluid temperature is assumed to be 
constant). 

We find the local and effective heat transfer of the wall of a channel with a porous in- 
sert from the traditional formulas 

q 

~s (x )  = Ts(X,  0 ) - -  Tf (x) ' ~ = Ts,(z ~O)--Tq ' ( 8 )  
h in 

where Tf(x) = ~ ~ Tf(x, z)dz is the fluid temperature averaged over the cross section of the 

1 s 
porous layer; Ts(z = 0) = ~ S Ts(X, 0)dx is the wall temperature averaged over the length of 

0 

the porous layer. 

It should be noted that Eqs. (1)-(8) are valid for porous inserts of any structure. The 
specific structure of the insert has an effect only on the value of the parameters I s, If, 
~v, and ~f and on the dependence of the last three parameters on the flow rate of the heat 
carrier. Recom/nendations for calculating these quantities for porous bodies with different 

structures are given in [5-10]. 

Temperature Distribution. At a given fluid flow rate and with known (and constant) 
thermophysical properties, including ~f and a v, boundary-value problem (1-7) has an analy- 
tical solution which can be obtained in dimensionless form by using a finite Fourier trans- 
formation (see Appendix). 

In the most general form, the resulting solution describes the two-dimensional temper- 
ature distribution of the skeleton and fluid and can be used to optimize the parameters of 
the porous layer, analyze the efficiency of its cooling, thermal deformation, etc. We should 
point out two features of the temperature distribution in the porous layer with a constant 
and unidirectional thermal load: i) the fluid temperature averaged over the cross section of 
the layer increases in the flow direction in accordance with the linear law 

f ( x ) = T i n %  qx . pcpv~' (9) 

2) the transverse temperature profile of the skeleton at the inlet of the porous layer is 
expressed by hyperbolic functions 

0s(0, Z) = * ] ' b - c h ( H - - Z ) +  n b S h ( H - - Z ) ,  ( i o )  

where 

(1 + 92) shH  + 2~o ch H 

We find from (3), (6), and (9) that 

~]o (0) = (9 + th H 
29 + (1 + q~2) th H 

Local heat transfer from the wall to the porous layer near the inlet 

29 + (l + 9 z) th H 
c~ m (0) = ~z s 1 q- 9 th H 

(ii) 

(12) 

(13) 
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Given a sufficiently thick porous layer, when thH = i, it follows that the conductivities 

are additive: ~m = as(1 + r as +'~f" 

It can be seen that the temperature distribution of the skeleton and the heat trans- 
fer of the channel wall on the initial section are not explicitly dependent on the effec- 
tive thermal conductivity of the fluid in the porous medium, since the temperature of the 
fluid at the inlet of the layer is independent of z in accordance with condition (3). It 
is not hard to show that Eqs. (11)-(13) are valie for any distance from the inlet if the 
effective thermal conductivity of the fluid is much greater than the thermal conductivity 
of the skeleton (the approximation if + ~, see below). With a finite value of the ratio 
A = If/i s , the length of the initial section where Eqs. (11)-(13) are valid is determined 
from the condition X ~ I/A I, where A l is the coefficient in the first exponent of the gene- 
ral solution (see Appendix). Thus, with if = 0, we have Un = ~n/H, A I + ~/(I + ~) and 
Xini.sc ~ 1 + H2/~ 2, i.e., the minimum length of the initial section Xini.sc ~ 6f at H < 3. 

Effect of the Effective Thermal Conductivity of the Fluid on theHeat-Flo w Distribution 
between the Skeleton and the Heat Carrier. If the thermal conductivity of the fluid can be 
ignored (if = 0), then N0 = i, nb= 0, ~ = 0, i.e., all of the heat goes from the heated 
wall to the skeleton, and there is no direct heat flow into the fluid either from the top 
(heated) or bottom (insulated) wall. The distribution of temperature and heat transfer in 
this case on the initial and stabilized sections was examined in detail in [9]. In parti- 
cular, for the initial section - where heating of the fluid is small compared to the tem- 
perature head- we find from (13) that ~m(0) = ~sthH. This clearly illustrates the signi- 
ficance of the parameter a s = ~%s~ v - the maximum possible heat-extraction capacity of the 
porous skeleton. Thus, for a copper skeleton at X s = 200 W/(m'K) and ~v = 2"10s W/(mS'K), 
we obtain a s z 2.105 W/(m2.K). This is considerably greater than the heat transfer for 
tubes in the case of flow of liquid metals. 

In the other limiting case (Xf/l s = ~), two variants are possible. If the thermal con- 
ductivity of the skeleton is low (i s = 0), then ~0 = 0, i.e., all heat is transferred from 
the wall directly to the fluid filling the boundary pores. In this case, it is important 
to consider the heat transfer ~f and the mixing of the fluid, as was done in [6]. If the 
effective thermal conductivity is high (if = =), the~ the fractions of heat n0 and Nb and 
the local heat transfer of the channel wall are determined by Eqs. (11)-(13), regardless of 
the length of the channel. The dimensionless temperatures of the skeleton and the heat car- 
rier are determined in any section x by the expressions 

X X O~X, Z ) = - f f + O s ( O  , Z); ~ (X, Z) - -  , (14) 
Z 

where Os(O, Z) has the form (10). I t  can be seen that  the temperatures of the skeleton and 
the fluid increase linearly in the flow direction. 

In the case of a finite value of the ratio A = If/A s , Eqs. (10)-(13) are valid for the 
initial section. We will therefore examine the section of stabilized heat transfer. Here, 
the fraction of heat removed from the wall by the skeleton and the local heat transfer are 
determined by the expressions 

9 [H (2 + A) --  91 + (A + 92) • th • + ~2/ch xH. (15) 
AxH [2~x q- (1 + ~2• th • 

.as  1 4. H [ 1 r215 ] 
a, m H ( I + A )  ' 3 ( l + A )  + • H ( I + A )  ;• 

l + g x t h •  + [  1 2q~x ] 
x~[29• + (1 + 9~•215 • H(1 + A )  

th • q- 9• (1 -- 1/ch • 
zH (1 + A)129• + (1 + q~2x2)th • 

q~ 
x/-/( 1 + A) [2q~ + ( 1 + 92x 2) th xH] 

These expressions lead to simple asymptotes: i) at A = 0 or # = 0, we have no = i, 

i h 1 

3~ h ~  
m s 

30 

(16) 

(17) 



i.e., the local thermal resistance of the porous layer consists of the serially connected 
thermal resistances of the skeleton h/31 s and the stagnant layer on the surface of the ske- 
leton (pores) I/h~v; 2) at A = ~, we obtain (11)-(13), as on the initial section; 3) with a 
finite value of A, we obtain the following for a thick porous layer, when thw/4 = 1 

1 + cp/• 
1 +q3• 

(18) 

n ( I + A )  % - ~  + 1 + ~ •  u • H• ( I + A )  H z • + ~• " (19)  

Table 1 illustrates the effect of the relative thermal conductivity of the fluid and heat 
transfer in the boundary pores on the value of q0. It can be seen that the latter may be 
considerably less than unity. Only at ~f/~s < 0.3 and H > 1-2 does the difference between 
the values of q0 determined with If = 0 and If = = not exceed 25%, since more than 75% of the 
heat from the wall is removed by the skeleton. 

Figure 1 shows the effect of the thermal conductivity of the material of the porous ske- 
leton on the percentage of heat q0 removed from the wall by the skeleton. The effect of the 
thermal conductivity of the skeleton material on the local heat transfer of the wall ~m is 
also shown. It follows from Fig. 1 that the higher the thermal conductivity of the skeleton 
material, the greater the fraction of heat removed from the wall by the skeleton and the 
greater the heat transfer. ~lus, replacing Invar (A m = 12 W/(m'K) by copper (Im = 400 W/ 
(m'K) leads to an increase in q0 from 0.5 to 0.85 and to an increase in heat transfer from 
0.5"i0 s to 1.5"105 W/(m2.K) for a given skeleton structure and rate of water flow. A dec- 
rease in the hydraulic diameter of the pores (with a constant porosity) also leads to an in- 
crease in q0 and CSn. It was assumed in the calculations of the curves for Fig. 1 that the 
heat transfer ~ on the surface of the rods of a brushlike structure and on the wall in an 
inter-rod space is the same, as was shown in [7, 8]. Thus, ~f = ~H, ~v = 4N~/de, where 
is the porosity of the brushlike structure; d e = ~d/(l - 9) is the equivalent (hydraulic) 
diameter of the pores [5-8]. The effective thermal conductivity of the fluid was determined 
from the formula [6]: if z 0.1pCpved e, which gives If ~ 400 W/(m.K) at Re e = vede/v = 103 . 

In the example being examined here, ~f/~s = ~de~/41s increases with an increase in the 
flow rate of the fluid (Reynolds number) approximately as Ree ~ since the heat transfer 
of particles in the porous medium increases as Ree ~ [7, 8]. In connection with the in- 
crease in the ratios ~f/~s and lf/ls, an increase in the flow rate of the heat carrier is 
accompanied by a decrease in the fraction of heat extracted from the wall by the skeleton 
(Table i)o 

Table 2 compares results on heat transfer calculated with Eq. (12) against experimental 
data on the heat transfer of walls of copper, duralumin, made with small projections [I0]. 
The heat transfer on the surface of the square projections and on the wall between the pro- 
jections was determined by the same method as for the cylindrical projections of a brushlike 
structure. 

Figure 2 clearly illustrates the effect of the effective thermal conductivity of the 
fluid and the thickness of the porous layer on the local heat transfer of its wall for two 
limiting cases: hf = = (curve i-5) and If = 0 (curve 6). It is evident that the difference 
between these curves is greater, the greater the amount of heat removed from the wall direc- 
tly by the fluid through the boundary pores. If we ignore the heat-transfer component ~f 
(curve 5), as is customary, then we might introduce a large error into the calculation of 
heat transfer. This fact is most noticeable for small and large thicknesses of the porous 
layer. 

Since the local heat transfer of the channel wall at If = ~ is the same at any distance 
from the inlet, then curves 5 and 6 in Fig. 2 represent the boundaries of the maximum scat- 
ter of heat transfer as a function of the effective thermal conductivity of the fluid. This 
range of csn might be expanded considerably if allowance is made for ~f. 

The above examples show that the distribution of the heat flow between the skeleton and 
the fluid in the boundary pores has a significant effect on the heat transfer of the walls 
of channels with porous inserts, particularly in the case of a skeleton with high porosity 
and low thermal conductivity and a high rate of flow of the heat carrier. Either Eq. (12) 
or (15) can be used for an approximate evaluation of q0. When gases rather than liquids in 
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drop form are used as the heat carrier, the importance of the thermal conductivity of the 
skeleton increases greatly and, with a high degree of accuracy, we can put ~0 = i. 

Effect of the Blot Number on Bulk Heat Transfer. In a small Biot number approximation 
(Bi = ad/%m, where Xm is the thermal conductivity of the material of the projection and d is 
the diameter of the projection of the brushlike structure), we have ~v = ~Sv, where S v is 
the total surface of the pores calculated per unit volume of the porous layer. At Bi ~ 1 
or more, the temperature of the projection, averaged over its radius (for any z), is differ- 
ent than the temperature of its surface (for the same z). This temperature difference can 
be estimated by approximating the radial temperature distribution in the projection by a 
parabola. As a result, due to the internal thermal resistance of the projection in the rac 
dial direction, the bulk heat-transfer coefficient decreases in accordance with the expres- 
sion 

~Sv 
1 + ,  Bi ( 2 0 )  

where r is the form factor of the fin (a particle of the porous medium). Thus, ~ = i/8 for 
a cylindrical projection and r = 1/6 for a plane fin. 

It follows from Eq. (20) that the effect of the Blot number on the distribution of tem- 
perature and heat transfer in the porous layer is small up to Bi % 1 (the values of ~v at 
Bi = 1 differ by no more than 17%). 

APPENDIX 

The solution of boundary-value problem (1)-(7)in dimensionless form: 

0q(X, Z)--  T s - - T i n  __ X C 
To H -  + - ~ -  !ch • (H - -  Z) + q~• sh • (H - -  Z)I - -  

- - D ( c h • 2 1 5  6 - - H  z + 3 ( H - Z )  z _ E  + 
6H (1 + A) 

- f f~B ,# -AnX(cos~nZ+ q)• sin BnZ), 
r i l l  [J~tl 

+ c ( - 1) + 

6 - -  H z + 3 (H - -  Z) ~ 
-+ ~• sh • (H --Z)]  - -  D ( 1 - -  • (ch • + ~p• sh • 4 

6H(1 + A) 

E H(11+A)  - ~  B'~(l+~])e'A'~x( c~ + q~• sin p~Z). 
n = l  

Here 

A,, = ~2[A q- I/(I + p,2)l; •  (I q- A)/A = 1 q- ;~s'~f ; 

Bn = - -  2 f q~• • 
~,~ (Hp,• q- 2qD• z + qDZx~H) [ HA~,~ (• + p,~) 

x 1 +  ~2__q92• ~ cos~,~H --  

q~,, ch H + h0 sh H -1- ~ __ q 32• cos I~,H - - ~  2 /; 
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C = 

E = 

2q~x ch • + (1 + q:2• sh nH - -  H (1 + 7() ; 

D =  q~ " 
• (1 @ A) [2qD• ch • @ ( 1 @ q~2• sh • 

(1 - -  • • + q~• (oh •  - -  1)] [H (1 + A) - -  2q~• 

W'fl 2 ( 1 -4- A) [2q)x ch xH -4- ( 1 -3- qDZx2) sh xg]  

H ~- h/~ v Z --= z/6 s, To = qfs/;~s, 

2r 
~n a r e  r o o t s  o f  t h e  t r a n s c e n d e n t a l  e q u a t i o n  t a n  ~n H = ~ _ r  

The g e n e r a l  fo rm o f  t h e  e x p r e s s i o n  f o r  c a l c u l a t i n g  ~0: 

'1]0 -~-- 
sh • q- qp• ch • 1 + - -  

•215 ch • + (1 + qo~x 2) sh • 1 + A 

q) (sh • + q)• ch • - -  q)• 

H (I + A)[2q)• • + (1 + qD2• sh xH] 
q~• ~/~ B=e -A,zx. 

r i l l  
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